K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\hept{\begin{cases}DK_A:x\ge1\\DK_B:x\ge1\end{cases}}\)

b) \(A=\sqrt{x}+\sqrt{x-1}\ge\sqrt{1}+\sqrt{1-1}=1\) ( do \(x\ge1\) ) 

\(B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{1+4}+\sqrt{1-1}=\sqrt{5}\) ( do giống như trên :) 

c) đề ngộ nghĩnh nhỉ :v nếu theo đề thì ko có x thoả mãn \(\sqrt{x+4}+\sqrt{x-1}=2\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

\(\sqrt{5}>2\) nên \(\sqrt{x+4}+\sqrt{x-1}>2\)

Vậy, không tồn tại \(x\) thỏa mãn \(\sqrt{x+4}+\sqrt{x-1}=2\)

19 tháng 8 2019

giải được chưa chỉ mình với

31 tháng 10 2017

ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)

ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)

a) Ta thấy theo điều kiện  \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)

Ta thấy theo điều kiện   \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)

\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)

Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.

31 tháng 10 2017

Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ. 

Giải:

\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)

\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)

a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)

Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)

Với \(x\ge1\)ta có:

\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)

Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)

b, *\(\sqrt{x}+\sqrt{x+1}=1\)

Điều kiện: \(x\ge0\)

Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)

Suy ra: \(x=0\)

*\(\sqrt{x+4}+\sqrt{x-1}=2\)

Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)

Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Thay x=9 vào A, ta được:

\(A=\dfrac{3-1}{3+1}=\dfrac{1}{2}\)

c: Ta có: P=AB

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}+\dfrac{5-x}{x-1}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\left(\dfrac{x+2\sqrt{x}-3+4\sqrt{x}+4+5-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{6\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{6}{\sqrt{x}+1}\)

20 tháng 6 2021

a) ĐKXĐ: \(x,y\ge0\)

\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)

b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)

20 tháng 6 2021

giỏi zữ z

30 tháng 7 2021

a, đk: \(x\ge0,x\ne9,x\ne4\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)

b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)

c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)

\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)

=>x=16

30 tháng 7 2021

a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\) 

Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)

b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)

Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)

c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)

\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)

Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)

 

1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)

2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)

\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

8 tháng 4 2021

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )