Tìm giá trị lớn nhất của biểu thức
A = \(\frac{27-2x}{12-x}\)(Với \(x\in Z,x\ne12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Xét \(x>12\)thì B < 0 (1)
Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên
B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11
Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)
Khi đó B = 5 (2)
So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11
Ta có :
Q = \(\frac{27-2x}{12-x}\)
\(=\frac{24-x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
Q lớn nhất khi \(\frac{3}{12-x}\)lớn nhất
\(\Rightarrow12-x\)phải là số nguyên ( để x nguyên ) và nhỏ nhất với giá trị dương .
Gía trị dương nhỏ nhất là 1 .
Vì \(12-x=1\Rightarrow x=11\)
Vậy \(x=11\)thì Q lớn nhất .
\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để A lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
\(\Leftrightarrow12-x\) nhỏ nhất
Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm
Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)
A = \(\frac{27-2X}{12-X}\)= \(\frac{24-2X+3}{12-X}\)= \(\frac{\left(12-X\right)\cdot2+3}{12-X}\)= 2 + \(\frac{3}{12-X}\)
Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN
Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11
Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)= \(2+3=5\)
Vậy bt A đạt GTLN là 5 khi x = 11