Bài 5: Tam giác ABC vuông tại A, đường cao AH. Biết AB = 6cm, AC = 8cm.
a)
Tính BC, AH, góc B, góc C
b)
Vẽ HE ^ AB (EÎAB), HF ^ AC (FÎAC). Chứng minh AEHF là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
a, Xét tứ giác AEHF có : ^AEH = ^EAF = ^HFA = 900
Vậy tứ giác AEHF là hcn
=> AH = EF ( 2 đường chéo bằng nhau )
c, Theo Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=3cm\)
SABC = 1/2 . AB . AC = 1/2 . 3 . 4 = 6 cm2
a) Xét tứ giác AEHF:
\(\widehat{EAF}=90^o;\widehat{AEH}=90^o;\widehat{AFH}=90^o\)
(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).
=> AEHF là hình chữ nhật (dhnb).
=> AH = EF (Tính chất 2 đường chéo của hình chữ nhật).
b) Ta có: FK = AF (gt).
Mà AF = EH (AEHF là hình chữ nhật).
=> AF = EH = FK.
Ta có: EH // AF (AEHF là hình chữ nhật).
Mà F thuộc AK (gt).
=> EH // FK.
Xét tứ giác EHKF:
EH // FK (cmt).
EH = FK (cmt).
=> EHKF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
Ta có: BC2 = AB2 + AC2 (Định lý Pytago).
Thay số: 52 = AB2 + 42.
=> AB2 = 9. => AB = 3.
Diện tích tam giác ABC vuông tại A:
\(\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right).\)
a) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)
a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có
góc B chung
=>ΔBHE đồng dạngvơi ΔBAH
b: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
c,d: Xét ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC và CH^2=CF*CA
e: AE*AB=AF*AC=AH^2
=>AE/AC=AF/AB
mà góc EAF chung
nên ΔAEF đồng dạng với ΔACB
.
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật