chứng minh rằng:
a, nếu p và p^2+8 là số nguyên tố thì p^2+2 cũng là số nguyên tố
b, nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$
Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)
Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.
Ta có đpcm.
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
Do p nguyên tố nên:
+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)
+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)
+) Xét p > 3 => p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3 => p2 + 8 là hợp số (loại)
Khi p = 3k + 2 => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3 => p2 + 8 là hợp số (loại)
=> p = 3 để p và p2 + 8 là nguyên tố
Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố
Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.