cho abc chia hết cho ab,ac,ba chứng minh rằng :abcchia hết cho bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)theo cấu tạo số ta có:
__
abc=(a+b+c)x2x11. (*1)
từ (*1)ta có:abcchia hết cho11và là số chẵn
b)khi a=1,ta có:
___
1bc=(1+b+c)x22
__
100+bc=22+22 x b+22 x c
78=12x b+21x c (*2)
Vậy 78 là số chẵn ;12x b là số chẵn suy ra 21x ccũng là số chẵn.Do 2 ta thấy c phải nhỏ hơn 4
Vậy c=0 hoặc2
-khi c=0 thì 12x b=78 (không xác định được số b thỏa mãn yêu cầu 0)
-khi c=2thì 12xb+42=78
Vậy c =2
Suy ra :12xb=36 hay b=3
Ta được số cần tìm là:132
__
Vậyabc=132
a)theo cấu tạo số ta có:
__
abc=(a+b+c)x2x11. (*1)
từ (*1)ta có:abcchia hết cho11và là số chẵn
b)khi a=1,ta có:
___
1bc=(1+b+c)x22
__
100+bc=22+22 x b+22 x c
78=12x b+21x c (*2)
Vậy 78 là số chẵn ;12x b là số chẵn suy ra 21x ccũng là số chẵn.Do 2 ta thấy c phải nhỏ hơn 4
Vậy c=0 hoặc2
-khi c=0 thì 12x b=78 (không xác định được số b thỏa mãn yêu cầu 0)
-khi c=2thì 12xb+42=78
Vậy c =2
Suy ra :12xb=36 hay b=3
Ta được số cần tìm là:132
__
Vậyabc=132
Lời giải:
Giả sử $(b-c,bc)>1$. Khi đó gọi $p$ là ước nguyên tố lớn nhất của $b-c$ và $bc$
Có:
$bc\vdots p\Rightarrow b\vdots p$ hoặc $c\vdots p$
Nếu $b\vdots p$ thì từ $b-c\vdots p\Rightarrow c\vdots p$
Nếu $c\vdots p$ thì từ $b-c\vdots p\Rightarrow b\vdots p$
Vậy $b$ và $c$ đều chia hết cho $p$.
Quay trở lại đkđb:
$ab+1\vdots c\vdots p$
Mà $ab\vdots p$ (do $b\vdots p$)
$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)
Vậy điều giả sử là sai. Tức là $(b-c,bc)=1$
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j
http://truongthhongquang.violet.vn/entry/show/entry_id/7754407
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!