So sánh số hữu tỉ\(\frac{a}{b}\left(a,b\in Z,b\ne0\right)\)với số 0 khi a,b cùng dấu và khi a,b không cùng dấu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có : a/b với a,b \(\in\) Z, b < 0
a) khi a và b cùng dấu mà b > 0 thì a > 0. Do đó số hữu tỉ a/b > 0
b) Khi a và b khác dấu mà b > 0 do đó a < 0. Do đó số hữ tỉ là : a/b < 0
Khi a và b cùng dấu mà a > 0; b > 0 thì \(\frac{a}{b}>0\)
Khi a và b khác dấu mà a < 0; b > 0 thì \(\frac{a}{b}< 0\)
Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì > 0
- Khi a,b khác dấu thì < 0
Tổng quát: Số hữu tỉ ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu
a = 0
Với a, b ∈ Z; b ≠ 0 thì:
- Khi a, b cùng dấu thì > 0
- Khi a, b khác dấu thì < 0
Tổng quát: Số hữu tỉ (a, b ∈ Z; b ≠ 0) > 0 nếu a, b cùng dấu; < 0 nếu a, b khác dấu; = 0 nếu a = 0.
Nếu a,b cùng dấu thì \(\dfrac{a}{b}\ge0\)
Nếu a,b khác dấu thì \(\dfrac{a}{b}< 0\)
\(\left[{}\begin{matrix}a\ge0,b>0\\a\le0,b< 0\end{matrix}\right.\Rightarrow\dfrac{a}{b}\ge0\\ \left[{}\begin{matrix}a\ge0,b< 0\\a\le0,b>0\end{matrix}\right.\Rightarrow\dfrac{a}{b}\le0\)
Khi a,b cùng dấu thì \(\frac{a}{b}>0\) ; khác dấu thì \(\frac{a}{b}< 0\)
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.
Nếu a/b cùng dấu thì a/b luôn dương => a/b > 0
Nếu a/b trái dấu thì a/b luôn âm => a/b < 0
Học tốt
Ta có :
Khi a, b cùng dấu :
Nếu a > 0 và b > 0 suy ra :
Nên : vậy
Nếu a < 0 và b < 0 suy ra :
Nên : vậy
Khi a, b khác dấu :
Nếu a > 0 và b < 0 suy ra :
Nên : vậy
Nếu a < 0 và b > 0 suy ra :
Nên : vậy
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0