Cho a,b,c là các số thực. CMR:
\(\frac{-1}{8}\le\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(1-ab\right)\left(1-bc\right)\left(1-ca\right)}{\left(1+a^2\right)^2\left(1+b^2\right)^2\left(1+c^2\right)^2}\le\frac{1}{8}\).
Cho a,b,c>0.CMR:
\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\ge28\)
Cho a,b,c >0 TM\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\). CMR:\(ab+bc+ca\ge12\)
Help me gấp với các god Trần Thanh Phương?Amanda?tthLightning FarronNguyễn Việt LâmAkai Haruma
Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)
BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)
\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)
Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)
\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).
Từ đó ta có thể suy ra đpcm.
Nãy nhầm vị trí:v Làm lại bài 3:
Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)
\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)
Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:
\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)
\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.
Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)
\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)
Như vậy ta có đpcm.
P.s: Mong là lần này không bị nhầm