Giúp mình câu này với
x5 - 9x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thất 2 vế của BĐT đều dương nên bình phương lên
\(\Leftrightarrow3x^2-9x+1>x^2+4x+4\)
\(\Leftrightarrow2x^2-13x-3>0\)
................
Đề có nhầm ko mà nghiệm xấu vậy ạ ?
a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)
\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)
b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)
c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)
\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)
1)\(6x-x^2=x\left(6-x\right)\)
2)\(5x^2z-15xyz+30xz^2=5x\left(xz-3y+6z\right)\)
3)\(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
\(4x^2+9x-145=0\)
\(\Leftrightarrow4x^2+29x-20x-145=0\)
\(\Leftrightarrow x\left(4x+29\right)-5\left(4x+29\right)=0\)
\(\Leftrightarrow\left(4x+29\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+29=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=-29\\x=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{29}{4}\\x=5\end{cases}}}\)
Vậy ...
(12-12)-(57-57) nhé, khi đổi chỗ các số thì bạn nên nhớ vẫn giữ nguyên dấu, còn chuyển vế mới đổi dấu nha
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
b) Ta có: \(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(9x^2-1=0\)
\(\Leftrightarrow9x^2=1\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
\(\Leftrightarrow x\left(x^4-9\right)=0\Leftrightarrow x\left(x^2+3\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+3=0\left(vô.nghiệm\right)\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
\(x^5-9x=0\)
\(x\left(x^4-9\right)=0\)
\(x\left[\left(x^2\right)^2-3^2\right]=0\)
\(x\left(x^2+3\right)\left(x^2-3\right)=0\)
⇒\(\left[{}\begin{matrix}x=0\\x^2+3=0\\x^2-3=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=0\left(TM\right)\\x^2=-3\left(L\right)\\x^2=3\left(L\right)\end{matrix}\right.\)