K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Áp dụng định lí Py-ta-go cho hai tam giác vuông AKH và AIH, ta có:

    \(AK^2+HK^2=AH^2\)

    \(AI^2+HI^2=AH^2\)

   \(\Rightarrow AK^2+HK^2=AI^2+HI^2\)                                                                       \(\left(\cdot\right)\)

Giả sử \(AB\ne AC\)ta xét 2 trường hợp:

T/hợp 1: \(AB>AC\)

\(\Rightarrow AB-BK>AC-CI\)( vì \(BK=CI\)) hay \(AK>AI\)                      \(\left(1\right)\)

Mặt khác, vì \(AB>AC\)nên \(HB>HC\)( quan hệ đường xiên - hình chiếu )

\(\Rightarrow HB^2>HC^2\)hay \(HK^2+BK^2>HI^2+CI^2\Rightarrow HK>HI\)             \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra: \(AK^2+HK^2>AI^2+HI^2\): trái với  \(\left(\cdot\right)\)

T/hợp 2: \(AB< AC\): Chứng minh tương tự ta có: \(AK^2+HK^2< AI^2+HI^2\): trái với \(\left(\cdot\right)\)

Vậy điều giả sử \(AB\ne AC\)là sai, hay \(AB=AC\)

16 tháng 8 2016

K A B C H I

a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)

=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.

b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C

Lại có I nằm giữa AC => K nằm giữa A và C

16 tháng 8 2016

a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)

b) \(\Delta ABC\) cân tại điểm A.

\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn

=> A nằm trên mặt phẳng chứa A bờ BC.

\(\Rightarrow\Delta AHC\approx\Delta BKC\)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)

\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)

Vậy K nằm giữa A và C

NV
19 tháng 9 2021

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

NV
19 tháng 9 2021

undefined

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

a:

Gọi O là trung điểm của CI

Xét tứ giác CKIH có

\(\widehat{CKI}+\widehat{CHI}=90^0+90^0=180^0\)

=>CKIH là tứ giác nội tiếp đường tròn đường kính CI

=>C,K,H,I cùng thuộc (O)

b: Xét (O) có

OI là bán kính

AB\(\perp\)OI tại I

Do đó; AB là tiếp tuyến của (O)

c: Ta có: ΔOKI cân tại O

mà OE là đường cao

nên OE là phân giác của góc KOI

Xét ΔOKE và ΔOIE có

OK=OI

\(\widehat{KOE}=\widehat{IOE}\)

OE chung

Do đó: ΔOKE=ΔOIE

=>\(\widehat{OKE}=\widehat{OIE}\)

=>\(\widehat{OKE}=90^0\)

=>EK là tiếp tuyến của (O)