Câu 1:
a, Cmr \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, Cho đường thẳng y=(m-2)x+2 (d). Cmr đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
Câu 2 : Gọi a,b,c là độ dài các cạnh của 1 tam giác biết : (a+b)(b+c)(c+a)=8abc. Cmr tam giác đó là tam giác đều
Có anh bảo e bình phương nên e cũng bình phương thử xem ạ:3 ( Hình như cái này là BĐT Mincốpski )
\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+b\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow4\left(a^2+b^2\right)\left(c^2+d^2\right)\ge4a^2c^2+8abcd+4b^2d^2\)
\(\Leftrightarrow4a^2d^2-8abcd+4b^2c^2\ge0\)
Đến đây bí rồi:((((((
zZz Cool Kid zZz bình phương sai huống hồ không bí:))
\(\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2=a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\) nhé! Thiếu số 2 phía trước kìa