K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

GIẢI

 Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)

 Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)

          \(\frac{b}{c+a}\le\frac{b}{b+c}\)

           \(\frac{c}{a+b}\le\frac{c}{b+c}\)

Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)

Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)

Chúc bạn học tốt !!!

21 tháng 9 2019

GIẢI

 Giả sử : a\ge b\ge c&gt;0a≥b≥c>0 thì a+b\ge a+c\ge b+ca+b≥a+c≥b+c

 Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca​=b+ca​

          \frac{b}{c+a}\le\frac{b}{b+c}c+ab​≤b+cb​

           \frac{c}{a+b}\le\frac{c}{b+c}a+bc​≤b+cc​

Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca​+c+ab​+c+bc​≤b+ca+b+c​

Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1&lt; 1+1=2b+ca​+c+ab​+c+bc​≤b+ca​+1<1+1=2

Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}&lt; 2b+ca​+c+ab​+c+bc​<2

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:

Xét hiệu: $a^2+b^2+c^2-(ab+bc+ac)=\frac{2a^2+2b^2+2c^2-2(ab+bc+ac)}{2}=\frac{(a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)}{2}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c>0$

$\Rightarrow a^2+b^2+c^2\geq ab+bc+ac(1)$

Lại có:

Do $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$a< b+c$

$\Rightarrow a^2< a(b+c)$

Tương tự: $b^2< b(a+c); c^2< c(a+b)$

Cộng theo vế các BĐT trên: $a^2+b^2+c^2< a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)(2)$

Từ $(1); (2)$ ta có đpcm.

8 tháng 8 2023

bạn Tham khảo bài bạn này 

23 tháng 5 2016

a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó

b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng 

ch mik mk ich lại nha !!!

23 tháng 5 2016

ý bạn là sao?????

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

6 tháng 1 2017

a=12 b=1 c=4

k đi

NV
27 tháng 7 2021

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

27 tháng 7 2021

thề luôn bài như vầy mà cả viết lẫn nghĩ có 10phut

 

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu