K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

21 tháng 12 2019

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225  

Suy ra: BC = 35 (cm)

Vì AD là đường phân giác của ∠ (BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC – BD = 35 – 15 = 20cm

Trong ΔABC ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

24 tháng 1 2022

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225 

Suy ra: BC = 35 (cm)

Vì AD là đường phân giác của ∠∠(BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC – BD = 35 – 15 = 20cm

Trong ΔABC ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a: BC=35(cm)

Xét ΔABC có AD là đường phân giác

nên BD/AB=CD/AC

hay BD/21=CD/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó: BD=15(cm); CD=20(cm)

Xét ΔABC có ED//AB

nên ED/AB=CD/CB

=>ED/21=20/35=4/7

=>ED=12(cm)

11 tháng 10 2023

a) Ta có:

\(sin40=\dfrac{AB}{BC}=\dfrac{21}{BC}\)\(\Rightarrow BC=\dfrac{21}{sin40}\simeq33cm\)

\(cos40=\dfrac{AC}{BC}\Rightarrow AC=cos40.33\simeq25cm\)

b) \(sinB=\dfrac{AC}{BC}=\dfrac{25}{33}\Rightarrow\widehat{B}\simeq49^o\)

\(BD=\dfrac{2.BC.AB.cos24,5}{BC+AB}\simeq12cm\)

11 tháng 10 2023

\(Taco.\dfrac{BC}{sinA}=\dfrac{AB}{SinC}\Rightarrow BC=32,67cm=>AC=\sqrt{32,67^2-21^2}=25cm\)

Taco ^B=90-40=30 do

\(BD=\dfrac{2.21.32,67}{21+32,67}.CosB:2=24,69cm\)

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b:

Sửa đề: AN=2cm

MN//BC

=>MN/BC=AN/AC

=>MN/10=2/8=1/4

=>MN=2,5cm

c AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm; DC=40/7cm

26 tháng 5 2020

chij vào vndoc á xong rùi kéo xuống nó vẹ cho

24 tháng 5 2020

a, Xét △ABC vuông tại A và △MDC vuông tại M

Có: ∠ACB là góc chung

=> △ABC ᔕ △MDC (g.g)

b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)

=> 362 + 482 = BC2  => BC2 = 3600 => BC = 60 (cm)

Vì M là trung điểm BC (gt) => MB = MC =  BC : 2 = 60 : 2 = 30 (cm)

Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)

và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)

c, Xét △BME vuông tại M và △BAC vuông tại A

Có: ∠MBE là góc chung

=> △BME ᔕ △BAC (g.g)

\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)

 Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)

=> ME là đường trung trực BC

=> EC = BE

Mà BE = 50 (cm)

=> EC = 50 (cm)

e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)

P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi

Bài làm 

@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à. 

a) Xét tam giác ABC và tam giác MDC có:

\(\widehat{BAC}=\widehat{DMC}=90^0\)

\(\widehat{BCA}\)chung

=> Tam giác ABC ~ tam giác MDC ( g - g )

b) Xét tam giác ABC vuông tại A có:

Theo pytago có:

BC2 = AB2 + AC2 

hay BC2 = 362 + 482 

hay BC2 = 1296 + 2304

=> BC2 = 3600

=> BC = 60 ( cm )

Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )

Vì tam giác ABC ~ tam giác MDC ( cmt )

=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)

hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)

=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)

=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)

c) Xét tam giác MBE và tam giác ABC có:

\(\widehat{BME}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác MBE ~ tam giác ABC ( g - g )

=> \(\frac{ME}{AC}=\frac{BM}{AB}\)

hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)

Xét tam giác MEC vuông tại M có:

EC2 = MC2 + ME2 

hay EC2 = 302 + 402 

=> EC2 = 900 + 1600

=> EC2 = 50 ( cm )

a) Vì tam giác MDC ~ Tam giác ABC

=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)

Câu c, d và câu đ giống nhau ? 

24 tháng 5 2022

Cảm ơn bạn