Cho a,b,c thỏa mãn \(\hept{\begin{cases}a+b+c=2020\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\end{cases}}\)
Chứng minh: một trong 3 số a,b,c phải có một số bằng 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)
=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)
=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)
=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)
Khi đó Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020
= 1 + 1 + 1 = 3
Vậy P = 3
Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Mà \(a+b+c=2019\)
\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)
khó quá nha bn
mk mới chỉ hok lớp 7 thôi
xin lỡi nha
mk tin sẽ có nguoi tra lới cau hoi của bn
hok tot >_<
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Ta có:
\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)
Dấu = xảy ra khi \(a=b=c=d=1\)
\(a+b+c=2020\Rightarrow\frac{1}{a+b+c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu a + b = 0 thì c = 2020
Nếu b + c = 0 thì a = 2020
Nếu a + c = 0 thì b = 2020
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)
\(\Rightarrow a^2b+a^2c+abc+ab^2+abc+b^2c+abc+ac^2+bc^2=abc\)
\(\Rightarrow...\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(TH1:a=-b\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=\frac{1}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\Rightarrow\frac{1}{c}=\frac{1}{2020}\Leftrightarrow c=2020\)
Các trường hợp kia tương tự