K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 9 2019

\(sina=\frac{2}{3}\Rightarrow cos^2a=1-sin^2a=\frac{5}{9}\)

\(A=2sin^2a+5cos^2a=\frac{8}{9}+\frac{25}{9}=\frac{11}{3}\)

\(B=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=\frac{4}{5}-\frac{5}{2}=-\frac{17}{10}\)

NV
8 tháng 2 2022

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

8 tháng 2 2022

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

NV
18 tháng 6 2019

\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)

b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)

15 tháng 7 2021

\(A=1-2sin^2\alpha-5cos^2\alpha=1-2\left(sin^2\alpha+cos^2\alpha\right)-3cos^2\alpha\) 

\(=1-2-3.\left(\dfrac{2}{3}\right)^2=-1-3.\dfrac{4}{9}=-1-\dfrac{4}{3}=-\dfrac{7}{3}\)

NV
15 tháng 7 2021

Đề là \(A=1-2sin^2a+5cos^2a\) hay \(A=1-2sin^2a-5cos^2a\) vậy nhỉ?

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

28 tháng 3 2022

\(A=\dfrac{\dfrac{4sin\alpha}{sin\alpha}+\dfrac{5cos\alpha}{sin\alpha}}{\dfrac{2sin\alpha}{sin\alpha}-\dfrac{3cos\alpha}{sin\alpha}}\)

\(A=\dfrac{4+5cot\alpha}{2-3cot\alpha}\)

Biết cotα=\(\dfrac{1}{2}\) nên ta có:

\(A=\dfrac{4+5\cdot\dfrac{1}{2}}{2-3\cdot\dfrac{1}{2}}\)

\(A=\dfrac{4+\dfrac{5}{2}}{2-\dfrac{3}{2}}\)

A= 13

14 tháng 11 2016

\(A=2\sin^2\alpha+5\left(1-\sin^2\alpha\right)=5-3\sin^2\alpha=5-3\left(\frac{2}{3}\right)^2\)=\(\frac{11}{3}\)

3 tháng 11 2016

bài này dùng hình vẽ để tính các cạnh tam giác vuoog đc ko nhỉ ?

24 tháng 7 2020

a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)

b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)

\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)

\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)

\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)

c)

\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)