Tìm gTNN : x mũ 2 / x - 1 với x > 1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
16 tháng 9 2019
Ta có : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(\left(f\right)x\) đạt giá trị nhỏ nhất khi \(\left(x+\frac{1}{2}\right)^2=0\) . Tức là \(x=-\frac{1}{2}\)
Chúc bạn học tốt !!!
16 tháng 9 2019
\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra tại x=-1/2
DH
1
16 tháng 1 2022
\(C\ge30\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-1
Đặt \(A=\frac{x^2}{x-1}\left(x>1\right)\)
\(A=\frac{x^2-1+1}{x-1}\)
\(A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}\)
\(A=x+1+\frac{1}{x-1}\)
\(A=x-1+\frac{1}{x-1}+2\)
Áp dụng BĐT Cauchy cho các số dương ta có :
\(x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4\)
\(\Leftrightarrow A_{min}=4\)
Đẳng thức xảy ra khi và chỉ khi : \(x-1=\frac{1}{x-1}\Leftrightarrow x=2\)
Chúc bạn học tốt !!!
Đặt A=\frac{x^2}{x-1}\left(x>1\right)A=x−1x2(x>1)
A=\frac{x^2-1+1}{x-1}A=x−1x2−1+1
A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}A=x−1(x−1)(x+1)+x−11
A=x+1+\frac{1}{x-1}A=x+1+x−11
A=x-1+\frac{1}{x-1}+2A=x−1+x−11+2
Áp dụng BĐT Cauchy cho các số dương ta có :
x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2x−1+x−11+2≥2(x−1).(x−1)1+2
\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4⇔x−1+x−11+2≥2+2=4
\Leftrightarrow A_{min}=4⇔Amin=4
Đẳng thức xảy ra khi và chỉ khi : x-1=\frac{1}{x-1}\Leftrightarrow x=2x−1=x−11⇔x=2