chứng minh bất đẳng thức a(b-c)^2+b(c-a)^2+c(a-b)^2>a^2+b^2+c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(a^2+b^2+c^2+d^2+4-2\left(a+b+c+d\right)\ge0\)
\(a^2+b^2+c^2+d^2+4-2a-2b-2c-2d\ge0\)
\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)+\left(d^2-2d+1\right)\ge0\)
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi a; b; c; d
=> bất đẳng thức được chứng minh
Hy vọng a;b;c dương
Khi đó: \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\) ; \(\frac{b^2}{c^2}+1\ge\frac{2b}{c}\) ; \(\frac{c^2}{a^2}+1\ge\frac{2c}{a}\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt[3]{\frac{abc}{abc}}-3\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)
ta có\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}=2\frac{a}{c}\)
tương tự:\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{c}{b}\)
Cộng 3 về bất đẳng thức trên lại với nhau ta đươc:\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng BĐT Cô - si cho các số dương ta có :
+ ) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\left(1\right)\)
Cmt ta có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\left(2\right)\)
+ ) \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\left(3\right)\)
Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Đề phải cho a,b,c lớn hơn 0 mới đúng
BĐT cần chứng minh tương đương
\(\left(a+b+c\right)\left(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{a^2+c^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\Sigma\dfrac{c\left(a^2+b^2\right)+\left(a+b\right)\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\Sigma\dfrac{c\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\Sigma\dfrac{c\left(\left(a+b\right)^2-2ab\right)}{a+b}\le a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ac+bc+ac\right)\le a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
áp dụng Bđt \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)\
\(\Rightarrow a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\)
Ta cần cm
\(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)
BĐT trên tương đương
\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)
BĐT trên là hệ quả của BĐT Schur nên ta có đpcm