K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:

Ta có:

\(A^2=(\sqrt{x^2-4x+5}-\sqrt{x^2+6x+13})^2=2x^2+2x+18-2\sqrt{(x^2-4x+5)(x^2+6x+13)}(*)\)

Áp dụng BĐT Bunhiacopxky:

\((x^2-4x+5)(x^2+6x+13)=[(x-2)^2+1^2][(x+3)^2+2^2]\)

\(\geq [(x-2)(x+3)+1.2]^2=(x^2+x-4)^2\)

\(\Rightarrow \sqrt{(x^2-4x+5)(x^2+6x+13)}\geq |x^2+x-4|\geq x^2+x-4(**)\)

Từ \((*); (**)\Rightarrow A^2\leq 2x^2+2x+18-2(x^2+x-4)\)

\(\Leftrightarrow A^2\leq 26\Rightarrow A\leq \sqrt{26}\)

Vậy $A_{\max}=\sqrt{26}$. Dấu "=" xảy ra khi $x=7$

9 tháng 4 2019

Không chắc lắm nha! Phần BĐT phụ mình có đc là nhờ sách nâng cao nên ms làm đc thôi!

Ta c/m BĐT phụ: \(\left|\sqrt{f^2+g^2}-\sqrt{h^2+k^2}\right|\le\sqrt{\left(f-h\right)^2+\left(g-k\right)^2}\) với f - h;g-k là hằng số. (1)

Bình phương hai vế,ta có: \(BĐT\Leftrightarrow f^2+g^2+h^2+k^2-2\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\le f^2+h^2-2fh+g^2+k^2-2gk\)

\(\Leftrightarrow fh+gh\le\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\) (2)

Nếu fh + gh < 0 thì (2) đúng

Nếu fh + gh >= 0 thì \(\left(2\right)\Leftrightarrow f^2h^2+g^2k^2+2fhgi\le f^2h^2+f^2k^2+g^2h^2+g^2k^2\)

\(\Leftrightarrow\left(fk-gh\right)^2\ge0\)(đúng)

Dấu "=" xảy ra fk = gh và fh + gk >= 0 (trích chứng minh BĐT ở sách 9 chuyên đề đại số THCS_ Vũ Hữu Bình)

Quay lại bài toán,ta có: \(P=\left|\sqrt{\left(x-2\right)^2+1^2}-\sqrt{\left(x+3\right)^2+2^2}\right|\)

\(\le\sqrt{\left(-5\right)^2+\left(1-2\right)^2}=\sqrt{25+1}=\sqrt{26}\)

Dấu "=" xảy ra khi 2(x-2) = 1(x+3) và (x-2)(x+3) + 1(x+3) >=0

Tức là x = 7 (t/m)

18 tháng 1 2016

\(A\ge0\)
Dấu "=" xảy ra <=> \(\sqrt{x^2-4x+5}=\sqrt{x^2+6x+13}\) 
\(\Leftrightarrow x^2-4x+5=x^2+6x+13\)
\(\Leftrightarrow10x=-8\)
\(\Leftrightarrow x=-0.8\)
 

29 tháng 5 2019

Ta có 

\(P^2=2x^2+2x+18-2\sqrt{\left(x^2-4x+5\right)\left(x^2+6x+13\right)}\)

Xét \(P^2\le26\)

=> \(\sqrt{\left(x^2-4x+5\right)\left(x^2+6x+13\right)}\ge x^2+x-4\)

<=> \(\left(x^2-4x+5\right)\left(x^2+6x+13\right)\ge\left(x^2+x-4\right)^2\)

<=> \(x^2-14x+49\ge0\)

<=> \(\left(x-7\right)^2\ge0\)( luôn đúng)

=> \(P\le\sqrt{26}\)'

Vậy \(MaxP=\sqrt{26}\)khi x=7

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....