K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)

\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)

Đến đây thao vào giải tiếp

9 tháng 1 2018

Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a\)\(\frac{x-2}{x-4}=b\)

khi đó (1) <=> \(a^2+ab-12b^2=0\)

<=> \(a^2+4ab-3ab-12b^2=0\)

<=>  \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)

<=> \(\left(a+4b\right)\left(a-3b\right)=0\)

<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)

tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?

29 tháng 2 2020

\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)

\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)

Mà \(2x^2-6x+16\ne0\) nên:

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)

Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)

28 tháng 2 2020

Bạn đặt ẩn phụ và làm nhé :
Đặt \(a=\frac{x+1}{x-2},b=\frac{x-2}{x-4}\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt có dạng :
\(a^2+ab-12b^2=0\)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

15 tháng 1 2019

a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)

\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)

\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)

\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)

19 tháng 8 2017

Câu 1/ 

x4 + (x - 1)(x2 - 2x + 2) = 0

\(\Leftrightarrow\)x4 + x3 - 3x2 + 4x - 2 = 0

\(\Leftrightarrow\)(x4 - x3 + x2) + (2x3 - 2x2 + 2x) + (- 2x2 + 2x + 2) = 0

\(\Leftrightarrow\)(x2 - x + 1)(x2 + 2x - 2) = 0

Tới đây tự làm tiếp nhé.

19 tháng 8 2017

Câu 2/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x-2}{x-4}=b\end{cases}}\)

Thì ta có pt

\(\Leftrightarrow\)a2 + ab - 12b2 = 0

\(\Leftrightarrow\)(a2 - 3ab) + (4ab - 12b2) = 0

\(\Leftrightarrow\)(a - 3b)(a + 4b) = 0

Tự làm phần còn lại nhé.