Giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)
\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)
Đến đây thao vào giải tiếp
Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a\); \(\frac{x-2}{x-4}=b\)
khi đó (1) <=> \(a^2+ab-12b^2=0\)
<=> \(a^2+4ab-3ab-12b^2=0\)
<=> \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)
<=> \(\left(a+4b\right)\left(a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)
tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?
\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)
Mà \(2x^2-6x+16\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)
Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
a, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{3}+\frac{9-4x^2}{8}+\frac{x^2-8x+16}{6}=0\)
\(\Leftrightarrow\frac{8\left(x^2-4x+4\right)+3\left(9-4x^2\right)+4\left(x^2-8x+16\right)}{24}=0\)
\(\Leftrightarrow\frac{8x^2-32x+32+27-12x^2+4x^2-32x+64}{24}=0\)
\(\Leftrightarrow\frac{123-64x}{24}=0\Leftrightarrow123-64x=0\Leftrightarrow x=\frac{123}{64}\)
Câu 1/
x4 + (x - 1)(x2 - 2x + 2) = 0
\(\Leftrightarrow\)x4 + x3 - 3x2 + 4x - 2 = 0
\(\Leftrightarrow\)(x4 - x3 + x2) + (2x3 - 2x2 + 2x) + (- 2x2 + 2x + 2) = 0
\(\Leftrightarrow\)(x2 - x + 1)(x2 + 2x - 2) = 0
Tới đây tự làm tiếp nhé.
Câu 2/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x-2}{x-4}=b\end{cases}}\)
Thì ta có pt
\(\Leftrightarrow\)a2 + ab - 12b2 = 0
\(\Leftrightarrow\)(a2 - 3ab) + (4ab - 12b2) = 0
\(\Leftrightarrow\)(a - 3b)(a + 4b) = 0
Tự làm phần còn lại nhé.