Cho tam giác ABC vuông cân tại A. M là trung điểm cạnh BC. Từ đỉnh M vẽ góc 45 độ sao cho các cạnh củ góc này làn lượt cắt AB, AC tại E và F.
Chmr: \(S_{\Delta MEF}< \frac{1}{4}S_{\Delta ABC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ MH vuông góc AB. Trên AB lấy điểm D sao cho MD vuông góc MF, hơn nữa vì MA vuông góc MB => ^AMF = ^BMD (1)( góc có cạnh tương ứng vuông góc)
Tg ABC vuông cân tại A => MA = MB (2) và ^MBD = ^MAF = 45o (3)
Từ (1), (2) ,(3) => tg AMF = tg BMD (g.c.g) => AF = BD (4) và MD = MF (5)
Mặt khác ^EMF = 45o mà ^DMF = 90o => ^DME = EMF = 45o (6)
Từ (5),(6) => tgEMF = tg DME (c.g.c) ( vì có cạnh ME chung) => DE = EF (7)
Từ (4) và (7) => AB = AE + BD + DE = AE + AF + DE > EF + DE = 2DE <=> DE < AB/2 <=> MH.DE/2 < MH.AB/4 <=> S(EMF) = S(DME) < S(AMB)/2 = S(ABC)/4 (đpcm)
Hạ MH vuông góc AB. Trên AB lấy điểm D sao cho MD vuông góc MF, hơn nữa vì MA vuông góc MB => ^AMF = ^BMD (1)( góc có cạnh tương ứng vuông góc)
Tg ABC vuông cân tại A => MA = MB (2) và ^MBD = ^MAF = 45o (3)
Từ (1), (2) ,(3) => tg AMF = tg BMD (g.c.g) => AF = BD (4) và MD = MF (5)
Mặt khác ^EMF = 45o mà ^DMF = 90o => ^DME = EMF = 45o (6)
Từ (5),(6) => tgEMF = tg DME (c.g.c) ( vì có cạnh ME chung) => DE = EF (7)
Từ (4) và (7) => AB = AE + BD + DE = AE + AF + DE > EF + DE = 2DE <=> DE < AB/2 <=> MH.DE/2 < MH.AB/4 <=> S(EMF) = S(DME) < S(AMB)/2 = S(ABC)/4 (đpcm)
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))
Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)
b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)
Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)
c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))
Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)
Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\)
d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)
Để \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)
Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)
Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)