K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

Ko cho đk ai mà làm được.@@

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

NV
24 tháng 9 2019

Chỉ tìm được khi a;b;c dương, còn ko có điều kiện dương thì chịu thua :(

6 tháng 5 2021

Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).

Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\)\(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).

Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).

Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).

Dấu "=" xảy ra khi a = b = c = 1.

29 tháng 11 2021

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

29 tháng 11 2021

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

NV
24 tháng 9 2019

\(P=\frac{1}{\sqrt{\frac{1}{2}\left(a-b\right)^2+\frac{1}{2}\left(a^2+b^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(b-c\right)^2+\frac{1}{2}\left(b^2+c^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(c-a\right)^2+\frac{1}{2}\left(c^2+a^2\right)}}\)

\(\Rightarrow P\le\frac{1}{\sqrt{\frac{1}{2}\left(a^2+b^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(b^2+c^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(c^2+a^2\right)}}\)

\(\Rightarrow P\le\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2}}\)

\(\Rightarrow P\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

\(\Rightarrow P\le\frac{2}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

\(\Rightarrow P_{max}=3\) khi \(a=b=c=1\)

NV
24 tháng 9 2019

Quen thôi bạn

Ở hầu hết các bài toán có xuất hiện \(\sqrt{a.x^2-b.xy+c.y^2}\) thì đều có thể tách về \(\sqrt{m\left(x-y\right)^2+...}\)