K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

12 tháng 10 2018

ĐKXĐ x>0

Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được

\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)

\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)

Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành

\(2a^2+10+a=\sqrt{65a^2+104}\)

\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)

Đến đây bn tự giải tiếp nhé

15 tháng 10 2019

dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)

\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4

<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0

<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)

vậy x=-1 là nghiệm

21 tháng 10 2020

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

15 tháng 9 2020

Phương pháp giải như sau :  

Trước hết phải có ĐKXĐ là  \(x>1\)

Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\)        (1)

Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có

\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên

(1)   \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)

Kết luận:...        (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)