K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

10 tháng 12 2021

10 tháng 12 2021

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

28 tháng 12 2020

a/ \(\left\{{}\begin{matrix}S\in SB\subset\left(SBC\right)\\S\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow S=\left(SBC\right)\cap\left(SCD\right)\)

\(\left\{{}\begin{matrix}C\in SC\subset\left(SBC\right)\\C\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow C=\left(SBC\right)\cap\left(SCD\right)\)

\(\Rightarrow\left(SBC\right)\cap\left(SCD\right)=SC\)

b/ Gọi O là giao điểm của AC và BD

\(\Rightarrow\left\{{}\begin{matrix}O=\left(SAC\right)\cap\left(SBD\right)\\S=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\Rightarrow\left(SBD\right)\cap\left(SAC\right)=SO\)

c/ \(\left\{{}\begin{matrix}S=\left(SAD\right)\cap\left(SBC\right)\\Sx//AD//BC\end{matrix}\right.\Rightarrow\left(SAD\right)\cap\left(SBC\right)=Sx\)

21 tháng 11 2023

loading...  loading...  loading...  

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 11 2017

a, Giao tuyến (SAC) và (SBD) là SO


A S B C D O

10 tháng 11 2023

Gọi giao điểm của AC và BD là K

\(K\in AC\subset\left(SAC\right)\)

\(K\in BD\subset\left(SBD\right)\)

Do đó: \(K\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SK\)

Gọi giao điểm của AB và CD là H

\(H\in AB\subset\left(SAB\right)\)

\(H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SH\)

Gọi M là giao điểm của AD và BC

\(M\in AD\subset\left(SAD\right)\)

\(M\in BC\subset\left(SBC\right)\)

Do đó: \(M\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SM\)

\(P\in SD\subset\left(SCD\right)\)

\(P\in\left(PAB\right)\)

Do đó: \(P\in\left(SCD\right)\cap\left(PAB\right)\)(1)

\(H\in AB\subset\left(PAB\right);H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(PAB\right)\cap\left(SCD\right)\)(2)

Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(APB\right)=HP\)

10 tháng 11 2023

Cảm ơn ạ

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC