cho hbh abcd, trên ab lấy m, trên dc lấy n sao cho bm=dn. an cắt bd tại e, cm cắt bd tại f.
a) cm an=cm.
b) aecf là hình gì?
c) ac, mn và ef đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED và ΔCFB có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
DE=BF
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Xét ΔABF và ΔCDE có
AB=CD
\(\widehat{ABF}=\widehat{CDE}\)
BF=DE
Do đó: ΔABF=ΔCDE
Suy ra: AF=CE
Xét tứ giác AECF có
AF=CE
AE=CF
Do đó: AECF là hình bình hành
a: Ta có: \(\widehat{BAM}+\widehat{DAM}=\widehat{BAD}=90^0\)
\(\widehat{MAD}+\widehat{NAD}=\widehat{MAN}=90^0\)
Do đó: \(\widehat{BAM}=\widehat{NAD}\)
Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
\(\widehat{BAM}=\widehat{DAN}\)
Do đó: ΔABM=ΔADN
=>AM=AN
B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ
+ AD = BC
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh.
b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM.
c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường)
B2:
B3: đề sai.
B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN