K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

                                                           Bài giải

Ta có :

\(x^2+3x+x+3=x^2+0,5x+4x+2\)

\(x^2+4x+3=x^2+4,5x+2\)

\(\Rightarrow\text{ }\left(x^2+4,5x+2\right)-\left(x^2+4x+3\right)=0\)

\(x^2+4,5x+2-x^2-4x-3=0\)

\(0,5x-1=0\)

\(\frac{1}{2}x=1\)

\(x=1\text{ : }\frac{1}{2}\)

\(x=2\)

25 tháng 7 2017

\frac{2}{7}\cdot \:x=\frac{1}{7}\cdot \:x+17

\frac{1}{7}\:x=17

x = 119

kb với mình và tk cho tớ nha!

25 tháng 7 2017

\(\frac{2}{7}.x=\frac{1}{7}.x+17\)
\(\frac{1}{7}x=17\)
\(x=17:\frac{1}{7}\)
\(x=119\)

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

19 tháng 10 2021

\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)

19 tháng 10 2021

a) \(\left(x-2\right)^2\)

b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)

c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)

d) \(\left(x+1\right)^3\)

e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)

f) \(\left(x+3\right)^2\)

g) \(-\left(x-5\right)^2\)

h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

$\frac{x^3+8}{x^2-2x+1}.\frac{x^2+3x+2}{1-x^2}=\frac{(x^3+8)(x^2+3x+2)}{(x^2-2x+1)(1-x^2)}$

$=\frac{(x+2)(x^2-2x+4)(x+1)(x+2)}{(x-1)^2(1-x)(x+1)}$

$=\frac{(x+2)^2(x^2-2x+4)}{-(x-1)^3}$
 

7 tháng 8 2020

Bài làm:

Ta có: \(\left\{4x-2\left(x-3\right)-3\left[x-3\left(4-2x\right)+8\right]\right\}.\left(-3x\right)\)

\(=\left[4x-2x+6-3\left(x-12+6x+8\right)\right].\left(-3x\right)\)

\(=\left(2x+6-3x+36-18x-24\right).\left(-3x\right)\)

\(=\left(-19x\right).\left(-3x\right)\)

\(=57x^2\)

31 tháng 5 2021

\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x

\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)

\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)

\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)

\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)

31 tháng 5 2021

\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x

\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)

\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)

\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)

\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)

2:

=>x^3-1-2x^3-4x^6+4x^6+4x=6

=>-x^3+4x-7=0

=>x=-2,59

4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50

=>-62x+12=-50

=>x=1

7 tháng 10 2021

h) \(=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]=3x\left(2y-3z\right)\left(x^2-10y+15z\right)\)

k) \(=\left(x+2\right)\left(3x-5\right)\)

l) \(=\left(18^2+3\right)\left(x+3\right)=327\left(x+3\right)\)

m) \(=7xy\left(2x-3y+4xy\right)\)

n) \(=2\left(x-y\right)\left(5x-4y\right)\)