K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x\left(x-2\right)-\left(2-x\right)^2=0\)

\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy : \(x\in\left\{-2,2\right\}\)

11 tháng 5 2019

a.(x+2)2-x(x+2)=0

\(\Leftrightarrow\)(x+2)(x-2-x)=0

\(\Leftrightarrow\)(x+2)*2=0

\(\Leftrightarrow\)x+2=0

\(\Leftrightarrow\)x=-2

vay s={-2}

b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2

\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)

\(\Leftrightarrow\)8x+28-3x+6=24

\(\Leftrightarrow\)5x=-10

\(\Leftrightarrow\)x=-2

vay s={-2}

c.|x+5|=3x+1

neu x+5\(\ge\)0 thi |x+5|=x+5

\(\Leftrightarrow\)x\(\ge\)-5

ta co phuong trinh

x+5=3x+1

\(\Leftrightarrow\)-2x=-4

\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)

neu x+5<0 thi |x+5|=5-x

\(\Leftrightarrow\)x<-5

ta co phuong trinh

5-x=3x+1

\(\Leftrightarrow\)-4x=-4

\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)

vay s={2}

chuc bn hoc totbanh

11 tháng 5 2019

a, -2

b, -2

c, 2

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

\(\frac{2x-2\sqrt{x}+2}{x-\sqrt{x}}=\frac{2(x-\sqrt{x})+2}{x-\sqrt{x}}=\frac{2(x-\sqrt{x})+2}{x-\sqrt{x}}=2+\frac{2}{x-\sqrt{x}}\)

\(\dfrac{2x-2\sqrt{x}+2}{x\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+1}\)

27 tháng 9 2023

\(x^2+2y^2-2xy+4y+3< 0\)

\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)  

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\) 

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)

Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)

\(\Rightarrow x=y=-2\)

Vậy: .... 

27 tháng 9 2023

Cảm ơn anh/chị/bạn nhiều ạ!

NV
24 tháng 4 2021

TH1:  \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)

TH2: \(m>-1\):

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)

\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương

\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)

Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)

\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc  \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)

Vậy pt luôn có ít nhất 2 nghiệm với mọi m

23 tháng 3 2020

a)2x+7=3x+10

\(\Rightarrow7-10=3x-2x\)

\(\Rightarrow-3=x\)

Vậy x=-3

b)Bạn tự làm nha

c)Bạn làm tương tự câu d nha

d)+)Ta có :\(x+1⋮x+1\left(1\right)\)

+)Theo bài ta có:\(x-3⋮x+1\left(2\right)\)

+)Từ (1) và (2)

\(\Rightarrow\left(x+1\right)-\left(x-3\right)⋮x+1\)

\(\Rightarrow x+1-x+3⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3\right\}\)

Vậy \(x\in\left\{-2;0;-3;1;-5;3\right\}\)

Chúc bn học tốt

23 tháng 2 2022

a/

\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)

\(\Leftrightarrow6-6x=0\)

=> x=1

Làm có tâm ghê :)

17 tháng 10 2021

\(\left(2x+x^2\right)\left(x^2-3x+2\right)=0\Leftrightarrow x\left(x+2\right)\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=2\end{matrix}\right.\\ A=\left\{-2;0;1;2\right\}\)

\(3\le x^3\le27\Leftrightarrow x\in\left\{2;3\right\}\\ B=\left\{2;3\right\}\)

\(\Leftrightarrow A\cup B=\left\{-2;0;1;2;3\right\}\)