so sánh
a) 7 và √42
b) √12 + √35 và 6 + √21
c)4 + √33 và √29 + √14
d) √48 + √119 và 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
\(7^2=49\)
\(\sqrt{42}^2=42\)
\(\Rightarrow\sqrt{42}< 7\)
b, Ta có
\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)
\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)
\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)
\(c,\)Ta có
\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)
\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)
\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)
Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn
a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)
b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)
c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)
d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)
Mk gợi ý vậy thôi bn tự trình bày nhé
STD well
tính : 3/17 . 6/29 - 3/17 . 35/29 + 2022 3/17
b, 5/6-(1/3+1/2). 20%
c,9.5+(-13,2)+12,5+(-0,8)
a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)
a ) \(-\frac{6}{7}< \frac{3}{7}< \frac{18}{7}\)
b ) \(\frac{17}{35}>\frac{17}{-35}\)
c ) \(\frac{17}{35}>\frac{17}{53}\)
d ) \(\frac{12}{7}< \frac{17}{5}\)
a: 6^9=(6^3)^3=216^3>15^3
B: 6^36=(6^2)^18=36^18>35^18
c: 7^18=(7^2)^9=49^9>30^9
d: 3^500=243^100
7^300=343^100
=>3^500<7^300