Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
a) Đặt A = I 2x-1/3 I +107
Có I 2x - 1/3 I \(\ge\)0 với mọi x
=> I 2x - 1/3 I + 107 \(\ge\)107 với mọi x
Để A đạt GTNN thì A = 107
Dấu " = " xảy ra \(\Leftrightarrow\)I 2x-1/3 I = 0
\(\Leftrightarrow\)2x - 1/3 = 0
\(\Leftrightarrow\) 2x = 1/3
\(\Leftrightarrow\) x = 1/6
=> KL
b) Đặt B = I 1 - 4x I -1
Có I 1 - 4x I \(\ge\)0 với mọi x
\(\Rightarrow\)I 1 - 4x I - 1 \(\ge\)-1 với mọi x
Để B đạt GTNN thì B = -1
Dấu " = " xảy ra \(\Leftrightarrow\)I 1 - 4x I = 0
\(\Leftrightarrow\) 1 - 4x = 0
\(\Leftrightarrow\) 4x = 1
\(\Leftrightarrow\) x = 1/4
=> KL
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
ta có: