Cho \(0\le x\le1\)
Chứng minh rằng -x3+x2\(\le\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu
giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)
Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)
\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)
Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1
\(a\le1;b\le1\Rightarrow a-1\le0;b-1\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\frac{1}{ab+1}\le\frac{1}{a+b}\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự ta cũng có :
\(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\)
Cộng vế với vế ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\) (đpcm)
a) \(x-\sqrt{x}+1>0\)mà \(\sqrt{x}\)>0 => biểu thức > 0
b) \(\sqrt{x}\)\(\le x-\sqrt{x}+1\)<=> \(x-2\sqrt{x}+1\ge0\)(nhân lên do không âm)
<=> \(\left(\sqrt{x}-1\right)^2\ge0\)=> đpcm ^^