Chứng minh rằng 315+316+317 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(1+3+3^2)+3^3(1+3+3^2)+...+3^15(1+3+3^2)
=13(1+3^3+...+3^15) chia hết cho 13
\(\frac{19}{13}+\frac{14}{6}+\frac{1}{9}+\frac{4}{6}+\frac{7}{13}+\frac{17}{9}\)
\(=\left(\frac{19}{13}+\frac{7}{13}\right)+\left(\frac{14}{6}+\frac{4}{6}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)\)
\(=\frac{26}{13}+\frac{18}{6}+\frac{18}{9}\)
\(=2+3+2\)
\(=7\)
\(\frac{315}{316}\times\frac{313}{314}\times\frac{316}{315}\times\frac{317}{314}\)
\(=\left(\frac{315}{316}\times\frac{316}{315}\right)\times\left(\frac{313}{314}\times\frac{317}{314}\right)\)
\(=1\times1,006339\)
\(=1,006339\)
#Chúc bạn học tốt !
#k mình nhé ?
\(\frac{315}{316}\cdot\frac{316}{314}\cdot\frac{316}{315}\cdot\frac{317}{313}=\frac{315.316.316.317}{316.314.315.313}=\frac{1.1.316.317}{1.314.1.313}=\frac{100172}{98282}\)
Ta có : \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\)
\(=\frac{3}{2}\times\frac{2}{3}\times\frac{4}{5}=1\times\frac{4}{5}\)
\(=\frac{4}{5}\)
Đơn giản như đang giỡn :
=315.313.316.317/315.314.316.317
=313/314
hok tốt k nhé bạn .
\(\frac{315}{316}\cdot\frac{313}{314}\cdot\frac{316}{315}\cdot\frac{317}{314}\)
= \(\frac{315\cdot313\cdot316\cdot317}{316\cdot314\cdot315\cdot314}\)
=\(\frac{1\cdot313\cdot1\cdot317}{1\cdot314\cdot1\cdot314}\)(Bước này là bước rút gọn)
= \(\frac{99221}{98596}\)
#Kiều
315/316*313/314*316/315*317/313
=315*313*316*317/316*314*315*313
=317/314
Tick cho mik nha
\(a+3b⋮13\Rightarrow\left\{{}\begin{matrix}a⋮13\\3b⋮13\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a⋮13\\3b⋮13\end{matrix}\right.\Rightarrow5a+3b⋮13\)
\(\overline{abcdef}=1000\overline{abc}+\overline{def}=1001\overline{abc}+\overline{def}-\overline{abc}\)
\(=13.77\overline{abc}-\left(\overline{abc}-\overline{def}\right)⋮13\)
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
Ta có: \(3^{15}+3^{16}+3^{17}=3^{15}\left(1+3+3^2\right)=3^{15}\left(1+3+9\right)=3^{15}.13\)
Ta thấy: \(13⋮13\Rightarrow3^{15}.13⋮13\)
\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)\(\left(đpcm\right)\)
Mk làm theo ý hiểu ko biết đúng hay sai nx