Trong đường tròn O với 2 dây cung AB, CD cắt nhau tại M. Qua trung điểm S của BD kẻ SM cắt AC tại K sao cho \(\frac{AK}{CK}\)= a. Tính \(\frac{AM^2}{CM^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác CDK đồng dạng Tam giác ABO ( g.g) => CK/BA = DK/OB => CK.OB=BA.DK (1) . Tam giác DBA có IK//BA => IK/BA = DK/BD => IK.BD=BA.DK (2) . Từ (1) (2) =>CK.OB=IK.BD => CK.OB=IK.2OB=> CK=2IK . Lập luận 1 tí rồi suy ra điều phải chứng minh
1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau, OB và OC là phân giác ngoài của tam giác ABC. Ta có
\(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\)
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi.
2. Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
\(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\) Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.
3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\) Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\) Mặt khác theo định lý Pitago
\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)
Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\) là giao điểm ba đường trung trực.
a) Do \(OA=OB\) (2 bán kính)
=> Tam giác OAB cân tại O
Mà OH là đường trung tuyến
=> OH cũng là đường cao ứng với AB
=> OH vuông góc AB.
(VẬY TA CÓ ĐPCM).
b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn
=> góc CDA = 90 độ
=> CD vuông góc AD
Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)
=> Áp dụng HTL thì: \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)
VẬY TA CÓ ĐPCM.
c) Có: \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)
=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\) (HTL: \(AC^2=CD.CK\))
=> \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)
Áp dụng tiếp tục HTL ta được:
=> \(AD.CK=AC.AK\)
=> \(VP=\frac{AC.AK}{AC}=AK\)
VẬY TA CÓ ĐPCM.
Câu d nhaaaaaaaaa !!!!!
Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OK vuông góc với AB.
Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E
=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được:
=> OE vuông góc với CD.
* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:
=> \(OH.OK=OA^2\)
* Áp dụng HTL vào tam giác OCE vuông tại C có CI vuông góc với OE:
=> \(OI.OE=OC^2\)
Mà: \(OA=OE\) {2 BÁN KÍNH CỦA (O)}
=> \(OH.OK=OI.OE\)
(VẬY TA CÓ ĐPCM).