chung minh rang 5^n-1-5^n chia hết cho 4 số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)
#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)
\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)
#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4k + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.
=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9
Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Lời giải:
$n(n+1)\vdots 2$ do là tích của 2 số tự nhiên liên tiếp
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ
$\Rightarrow n^2+n+1\not\vdots 4(1)$
Mặt khác:
Xét số dư của $n$ khi chia cho $5$
Nếu $n=5k+1$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+1)^2+5k+1+1=25k^2+15k+3=5(5k^2+3k)+3\not\vdots 5$
Nếu $n=5k+2$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+2)^2+5k+2+1=25k^2+25k+7=5(5k^2+5k+1)+2\not\vdots 5$
Nếu $n=5k+3$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+3)^2+5k+3+1=25k^2+35k+13=5(5k^2+7k+2)+3\not\vdots 5$
Nếu $n=5k+4$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+4)^2+5k+4+1=25k^2+45k+21=5(5k^2+9k+4)+1\not\vdots 5$
Vậy $n^2+n+1\not\vdots 5$
Vậy.......