K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 10 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow x^2-8x+16+x+14-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{\left(x+14\right)^2-36\left(x+5\right)}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{x^2-8x+16}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(1+\frac{1}{x+14+6\sqrt{x+5}}\right)=0\)

2/

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\frac{10x}{10x}}+2\sqrt{\frac{56y}{14y}}+\frac{1}{2}.\frac{34}{35}=\frac{227}{35}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{5}\\y=\frac{4}{7}\end{matrix}\right.\)

17 tháng 10 2020

1.

\(PT\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\left(x\ge-5\right)\)

\(\Leftrightarrow x-4=\sqrt{x+5}-3=0\Leftrightarrow x=4\).

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

15 tháng 6 2017

từ giả thiết: \(x+y\le xy\le\frac{\left(x+y\right)^2}{4}\)(theo BĐT AM-GM)

\(\Leftrightarrow\left(x+y\right)\left(x+y-4\right)\ge0\)mà x,y dương nên \(x+y\ge4\)

ta có:\(16P\le\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\)

Áp dụng BĐT cauchy-schwarz theo chiều ngược lại:

\(\frac{\left(x+y\right)^2}{5x^2+7y^2}\le\frac{x^2}{3\left(x^2+y^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)

\(\frac{\left(x+y\right)^2}{5y^2+7x^2}\le\frac{y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}\)

\(\Rightarrow\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\le\frac{x^2+y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)(*)

xét \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}=2-\frac{x^2+y^2}{y^2+2x^2}-\frac{x^2+y^2}{x^2+2y^2}=2-\left(x^2+y^2\right)\left(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\right)\)

Áp dụng BĐT cauchy:\(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\ge\frac{4}{3\left(x^2+y^2\right)}\)

do đó \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}\le2-\frac{4}{3}=\frac{2}{3}\)

kết hợp với (*):\(16VT\le\frac{1}{3}+\frac{1}{2}.\frac{2}{3}=\frac{2}{3}\)

\(VT\le\frac{1}{24}\)

Dấu = xảy ra khi x=y=2

14 tháng 6 2017

tưởng giá trị nhỏ nhất chứ

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

22 tháng 12 2017

Không mặn mà với số này cho lắm

\(A=\dfrac{5}{2}x+\dfrac{2}{5x}+\dfrac{7}{2}y+\dfrac{8}{7y}+\dfrac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{5}{2}x.\dfrac{2}{5x}}+2\sqrt{\dfrac{7}{2}y.\dfrac{8}{7y}}+\dfrac{1}{2}.\dfrac{34}{35}\)

\(A\ge2+4+\dfrac{17}{35}=\dfrac{227}{35}\)

GTNN là \(\dfrac{227}{35}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{4}{7}\end{matrix}\right.\)

27 tháng 11 2018

1/ Ta có

 \(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

Tương tự

\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)

Đk: x khác 4, 5, 6, 7

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé

27 tháng 11 2018

em cần đoạn tiếp mak