cho \(\Delta ABC\)vuông tại A và đường cao AH. Tia phân giác góc B cắt AH tại I và cắt AC tại D. kẻ \(DK\perp BC\left(K\in BC\right)\)
a) chứng minh : \(\Delta ABD=\Delta KBD\)
b) chứng minh : \(AI>IH\)
c) Chứng minh : \(IK//DK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\) và \(\Delta EBD\) ta có:
\(BA = BE\) (gt)
\(\widehat {{\rm{ABD}}} = \widehat {{\rm{ EBD}}}\) (do \(BD\) là phân giác)
\(BD\) chung
Suy ra \(\Delta ABD = \Delta EBD\) (c-g-c)
b) Vì \(\Delta ABD = \Delta EBD\) (cmt)
Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{BED}}} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\)
Mà \(AH \bot BC\) (gt)
Suy ra \(AH\) // \(DE\)
Suy ra \(ADEH\) là hình thang
Mà \(\widehat {{\rm{DEB}}} = 90\) (cmt)
Suy ra \(ADEH\) là hình thang vuông
c)
Gọi \(K\) là giao điểm của \(AE\) và \(AD\)
Suy ra \(BK\) là phân giác của \(\widehat {{\rm{ABC}}}\)
Mà \(\Delta ABE\) cân tại \(B\) (do \(BA = BE\) )
Suy ra \(BK\) cũng là đường cao
Xét \(\Delta ABE\) có hai đường cao \(BK\) và \(AH\) cắt nhau tại \(I\)
Suy ra \(I\) là trực tâm của \(\Delta ABE\)
Suy ra \(EF \bot AB\)
Mà \(AC \bot AB\) (do \(\Delta ABC\) vuông tại \(A\))
Suy ra \(AC\) // \(EF\)
Suy ra \(ACEF\) là hình thang
Mà \(\widehat {{\rm{CAE}}} = 90^\circ \)(gt)
Suy ra \(ACEF\) là hình thang vuông
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:
BD chung
∠ABD = ∠HBD (BD là phân giác của ∠ABH)
⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)
b) Do ∆ABD = ∆HBD (cmt)
⇒ AB = BH (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AH (1)
Do ∆ABD = ∆HBD (cmt)
⇒ AD = HD (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AH
c) Xét ∆ADK và ∆HDC có:
AD = HD (cmt)
∠ADK = ∠HDC (đối đỉnh)
DK = DC (gt)
⇒ ∆ADK = ∆HDC (c-g-c)
⇒ ∠DAK = ∠DHC (hai góc tương ứng)
⇒ ∠DAK = 90⁰
Mà ∠DAB = 90⁰
⇒ ∠DAK + ∠DAB = 180⁰
⇒ B, A, K thẳng hàng
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a: Xét ΔABD và ΔKBD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
con chó sì ta poi vn chơi freefire
\(a.Xét\Delta ABDvà\Delta KBDcó:\)
\(BÂD\)\(=\widehat{BKD}\)\(\left(=90^O\right)\)
\(BD:cạnhchung\)
\(\widehat{ABD}=\widehat{KBD}\)
\(\Rightarrow\Delta ABD=\Delta KBD\)( cạnh huyền - góc nhọn )
\(c.Tacó:IH\perp BC;DK\perp BC\Rightarrow IH//DK\)