Chứng minh rằng :
B= 1+2+2^2+2^3+...+2^100 chia 3 dư 1
Ai nhanh giải đúng mk tick luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+......+\left(2^{98}+2^{99}\right)\)
\(\Rightarrow A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(\Rightarrow A=3+2^2.3+....+2^{98}.3\)
\(\Rightarrow A=3\left(1+2^2+....+2^{98}\right)\)
\(Vì3⋮3_{_{ }}\)\(\Rightarrow3\left(1+2^2+...+2^{98}\right)⋮3\)
Vậy Achia hết cho 3
bài 1: = 100-( 120 - 6.4)
= 100 - (120-24)
= 100 - 96
= 4
bài 2: 3x+13=-2
3x= (-2)-13
3x= -15
x= -15 : 3
x= -5
bài 3: ko bt :)))
a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)
=-20+.....................+396.(-20.(1+...................396))
suy ra s chia het cho -20
b/ 3s=3-32+33-34+.................+399-3100
3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)
4s=1-3100
s=(1-3100):4
vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1
nếu đúng thì tíc cho mình 2 cái nhé!
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
Ta có B = 1+2+2^2 + 2^3 + ...+ 2 ^100
= 1 + ( 2+2^2) +2 ( 2^3+2^4) +..+ ( 2^99 + 2^100)
= 1+2.(1+2 ) + 2^3.(1+2) + ...+ 2^99.( 1+2)
= 1+2.3+2^3.3 +....+ 2^99 .3 :3 dư 1 => đpcm
Vậy B:3 dư 1
( Lưu ý : đpcm= điều phải chứng minh)