K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)

    \(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)

=> P > 20

17 tháng 7 2019

A  <  20

học tốt

17 tháng 7 2019

Ta thấy :

\(A=\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}< \sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=20\)

\(\Rightarrow A< 20\)

Vậy A < 20

~Study well~

#KSJ

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

16 tháng 8 2016

Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc

\(\sqrt{\left(40+2\right)^2}=42\)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)

Ta thấy:\(42+2\sqrt{80}>42\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

11 tháng 8 2015

Tao nói thật nhé Mày là cái đồ óc chó mất dạy

24 tháng 7 2017

Sao bạn lại chửi bạn ấy?