Cho a,b,c > 0 và a.b.c = 1
Chứng minh: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)≥1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow abc=1\left(TMGT\right)\)
Ta có:
\(\frac{1}{a+2}=\frac{1}{\frac{x}{y}+2}=\frac{1}{\frac{x+2y}{y}}=\frac{y}{x+2y}=\frac{y^2}{xy+2y^2}\)
Tương tự:
\(\frac{1}{b+2}=\frac{z^2}{yz+z^2};\frac{1}{c+2}=\frac{x^2}{zx+x^2}\)
Ta có:
\(\frac{x^2}{xz+2x^2}+\frac{y^2}{xy+2y^2}+\frac{z^2}{yz+2z^2}\ge\frac{\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+xy+yz+zx}\)
Mặt khác \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)+xy+yz+zx\le3\left(x^2+y^2+z^2\right)\)
Rồi OK.Đến đây tịt r:( GOD nào vào thông não hộ ạ:(
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:
\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)
Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)
ai tick cho mik , mik tick lại cho !^__<nhớ giải câu hỏi nhé ! thanks
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha
Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)
Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$
\(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(\Rightarrow A=\sum\sqrt{\dfrac{1}{1+\left(\dfrac{x}{y}\right)^2}}=\sum\sqrt{\dfrac{y^2}{x^2+y^2}}=\sum\sqrt{\dfrac{y^2\left(x^2+z^2\right)}{\left(x^2+y^2\right)\left(x^2+z^2\right)}}\)
ÁP dụng Bunyakovsky:
\(\sum\sqrt{\dfrac{y^2\left(x^2+z^2\right)}{\left(x^2+y^2\right)\left(x^2+z^2\right)}}\le\sqrt{2\left(x^2y^2+y^2z^2+z^2x^2\right)\left(\sum\dfrac{1}{\left(x^2+y^2\right)\left(x^2+z^2\right)}\right)}\)
\(=\sqrt{2\left(x^2y^2+y^2z^2+z^2x^2\right).\dfrac{2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)}}\)
Cần chứng minh \(VT\le\dfrac{3}{\sqrt{2}}\)
\(\Leftrightarrow\left(x^2y^2+y^2z^2+z^2x^2\right)\left(x^2+y^2+z^2\right)\le\dfrac{9}{8}\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)\)
( đúng )
Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1
Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)
Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )
BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D
Sửa lại đề: CMR $P=\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\leq 1$
----------------------
Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$
Bài toán đã cho trở thành:
Cho $x,y,z>0$. CMR $P=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\leq 1$
Thật vậy:
$P=\frac{1}{2}(\frac{1-\frac{x}{x+2y})+\frac{1}{2}(1-\frac{y}{y+2z})+\frac{1}{2}(1-\frac{z}{z+2x})$
$=\frac{3}{2}-\frac{1}{2}\left(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\right)(*)$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\geq \frac{(x+y+z)^2}{x^2+2xy+y^2+2yz+z^2+2zx}=\frac{(x+y+z)^2}{(x+y+z)^2}=1(**)$
Từ $(*); (**)\Rightarrow P\leq \frac{3}{2}-\frac{1}{2}.1=1$
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
Em đã nêu hai cách giải ở đây: Câu hỏi của khiêm nguyễn xuân - Toán lớp 9 - Học toán với OnlineMath