K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Ta co:

\(x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)

Dau '=' xay ra khi \(x=y=1\)hoac \(x=y=-1\)

27 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)(Vì x,y cùng dấu)

và \(xy+\frac{1}{xy}\ge2\sqrt{\frac{xy}{xy}}=2\)(Vì x,y cùng dấu)

\(\Rightarrow x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)(Vì \(xy+\frac{1}{xy}\ge2\left(cmt\right)\))

Vậy GTNN của \(x^2+y^2+\frac{2}{xy}\)là 4\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

6 tháng 5 2016

\(3x^2+3y^2\ge6xy\left(Cauchy\right)\Rightarrow3x^2+3y^2+\frac{6}{xy}\ge6xy+\frac{6}{xy}\ge6.2=12\)

18 tháng 12 2016

Lời giải phía trên sai rồi. Biểu thức (mình đặt là A) sẽ bằng \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)

Ta biển đổi \(A=\frac{1}{4}.\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)

Thực hiện BĐT Cauchy 2 lượng đầu, lượng cuối cùng dùng BĐT \(x^2+y^2\ge2xy\)

Vậy giá trị nhỏ nhất là \(\frac{5}{2}\)

18 tháng 12 2016

Bài này thiếu điều kiện x,y > 0. Nếu có điều kiện thì quy đồng \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\) rồi áp dụng bất đẳng thức Cô-si được A \(\ge\)2

16 tháng 10 2016

\(P=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{\left(x+y\right)^2}{2xy}\)

Ta có : \(\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}=4\) (áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\))

\(\frac{\left(x+y\right)^2}{2xy}\ge2\)(Suy ra từ \(\left(a+b\right)^2\ge4ab\))

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x = y 

Vậy MIN P = 6