Tìm các số tự nhiên x,y sao cho: x20+(x +1)11=2016y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Ta thấy \(x,x+1\) luôn có 1 số chăn và 1 số lẻ
Do đó \(x^{20},\left(x+1\right)^{11}\) cũng luôn có 1 số chẵn và 1 số lẻ
\(\Rightarrow2016^y=x^{20}+\left(x+1\right)^{11}\) lẻ
Điều này xảy ra khi \(y=0\) , còn nếu \(y\ge1\) thì \(2016^y\) luôn chẵn ( mâu thuẫn )
Vậy y = 0
\(\Rightarrow x^{20}+\left(x+1\right)^{11}=2016^o=1\)
Nếu \(x=0\) thì đễ thấy thỏa mãn
Nếu \(x\ge1\) thì \(x^{20}+\left(x+1\right)^{11}>1\) ( vô lý )
Vậy \(\left(x,y\right)=\left(0,0\right)\)
Vế trái là tổng 2 số chẵn lẻ nên luôn là số lẻ \(\Rightarrow\) vế phải lẻ
\(\Rightarrow y=0\)
\(\Rightarrow x^{20}+\left(x+1\right)^{11}=1\Rightarrow x=0\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng nha
\(b,28⋮2x+1\)
\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng
2x+1 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
2x | 0 | -2 | 1 | -3 | 6 | -8 | 13 | -15 |
x | 0 | -1 | 1/2 | -3/2 | 3 | -4 | 13/2 | -15/2 |
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng
\(d,\left(x+1\right)\left(y-1\right)=3\)
\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
Thử y = 0 ta có số 25200640
ta có:25200640:18:19:20:21:22=7,974684185
7,974684185 ta làm tròn thảnh 8 18 x 19 x 20 x 21 x 22 x 8 = 25280640
Vậy A và y đều bằng 8
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
Lời giải:
Ta thấy $x,x+1$ luôn có 1 số chẵn và 1 số lẻ.
Do đó $x^{20}, (x+1)^{11}$ cũng luôn có 1 số chẵn, 1 số lẻ
$\Rightarrow 2016^y=x^{20}+(x+1)^{11}$ lẻ
Điều này xảy ra khi $y=0$, còn nếu $y\geq 1$ thì $2016^y$ luôn chẵn (mâu thuẫn)
Vậy $y=0$
$\Rightarrow x^{20}+(x+1)^{11}=2016^0=1$
Nếu $x=0$ thì dễ thấy thỏa mãn.
Nếu $x\geq 1$ thì $x^{20}+(x+1)^{11}>1$ (vô lý)
Vậy $(x,y)=(0,0)$
Lời giải:
Ta thấy $x,x+1$ luôn có 1 số chẵn và 1 số lẻ.
Do đó $x^{20}, (x+1)^{11}$ cũng luôn có 1 số chẵn, 1 số lẻ
$\Rightarrow 2016^y=x^{20}+(x+1)^{11}$ lẻ
Điều này xảy ra khi $y=0$, còn nếu $y\geq 1$ thì $2016^y$ luôn chẵn (mâu thuẫn)
Vậy $y=0$
$\Rightarrow x^{20}+(x+1)^{11}=2016^0=1$