Cho a,b,c,d>0. Chứng minh rằng 1 < a/a+b + b/b+c + c/c+d + d/d+a >3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)
\(=abcd+bd+cd+ab\left(1-c\right)+ad\left(1-b\right)+ac\left(1-d\right)+bc\left(1-d\right)+\left(1-a-b-c-d\right)\)
\(>1-a-b-c-d\)
Nghỉ lâu, giờ vào bài :v
Ta có : a,b,c,d >0
\(\Rightarrow\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{c+d+a}>\dfrac{c}{c+d+a+b}\)
\(\dfrac{d}{d+a+b}>\dfrac{d}{d+a+b+c}\)
Cộng cả 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(1\right)\)
Ta lại có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)
\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)
\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)
\(\dfrac{d}{d+a+b}< \dfrac{d}{d+b}\)
Cộng 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{d}{b+d}\right)=\left(\dfrac{a+c}{a+c}\right)+\left(\dfrac{b+d}{b+d}\right)=1+1=2\)
Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\left(2\right)\)
Từ (1) và (2)=> đpcm
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn
Cho a/b=c/d suy ra ad=bc
ta có ad+ac=bc+ac
suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé
=>đpcm
Áp dụng Côsi:
\(a^4+a^4+a^4+1\ge4\sqrt[4]{\left(a^4\right)^3}=4a^3\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-1\)
Ta chứng minh: \(a^3+b^3+c^3+d^3\ge4\)
Theo Côsi: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)
\(\Rightarrow a^3+b^3+c^3+d^3+2.4\ge3\left(a+b+c+d\right)=3.4\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-4\ge3\left(a^3+b^3+c^3+d^3\right)\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge a^3+b^3+c^3+d^3\)