K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

21 tháng 10 2016

olm có ng` lm r` đó bn qua xem lại

22 tháng 10 2016

http://olm.vn/hoi-dap/question/731102.html

13 tháng 7 2021

ặt x+1=t thì t>0 và  x=-1+t. Ta có

           2x+\dfrac{1}{\left(x+1\right)^2}=2\left(-1+t\right)+\dfrac{1}{t^2}=-2+t+t+\dfrac{1}{t^2}

                                                                       \ge-2+3\sqrt[3]{t.t.\dfrac{1}{t^2}}=-2+3=1  

29 tháng 8 2021

1

 

31 tháng 12 2015

là câu hỏi tương tự nha bạn

6 tháng 4 2016

Do x, y >0  nên bất đẳng thức tương đương với :

\(\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\left(1+xy\right)\ge\left(1+x\right)^2\left(1+y\right)^2\)

\(\Leftrightarrow\left(2+2x+2y+x^2+y^2\right)\left(1+xy\right)\ge\left(1+2x+x^2\right)\left(1+2y+y^2\right)\)

\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)

Bất đẳng thức này luôn đúng

Dấu bằng xảy ra khi x=y=1