Chứng tỏ không có giá trị nào của a và b thỏa mãn:
-5a2+4a-2ab-b2-3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Đáp án B
3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c
Đặt t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0
⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.
Ta có: \(-5a^2+4a-2ab-b^2-3=0\)
\(\Leftrightarrow-4a^2-a^2+4a-2ab-b^2-1-2=0\)
\(\Leftrightarrow-\left(4a^2-4a+1\right)-\left(a^2+2ab+b^2\right)-2=0\)
\(\Leftrightarrow-\left(2a-1\right)^2-\left(a+b\right)^2-2=0\)
Mà \(-\left(2a-1\right)^2-\left(a+b\right)^2-2\le-2< 0\)
Nên không có giá trị nào của a và b thỏa mãn \(-5a^2+4a-2ab-b^2-3=0\)
\(-5a^2+4a-2ab-b^2-3=\left(-a^2-2ab-b^2\right)-\left(4a^2-4a-1\right)-2\)
\(=-\left(a+b\right)^2-\left(2a-1\right)^2-2\le-0-0-2=-2\Rightarrow\text{đpcm}\)