K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

Em nhấn vào link màu xanh: Câu hỏi của Nguyễn Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

13 tháng 9 2017

\(\frac{2n^2+9n+7}{2n+1}=\frac{\left(2n^2+9n+4\right)+3}{2n+1}=\frac{\left(2n^2+n+8n+4\right)+3}{2n+1}\)

\(=\frac{n\left(2n+1\right)+4\left(2n+1\right)+3}{2n+1}=\frac{\left(n+4\right)\left(2n+1\right)+3}{2n+1}=n+4+\frac{3}{2n+1}\)

Để phân thức trên là 1 số nguyên <=> \(3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-2;-1;0;1\right\}\)

4 tháng 3 2017

có số { 0;1 }

k mk nha ♥

Vì 7/2n-1 có giá trị là số nguyên 

=> 7 chia hết cho 2n-1

=> 2n-1 thuộc ước của 7 

Ư(7)={1;-1;7;-7}

Ta có bảng :

2n-1     1     -1    7      -7

2n        2     0     8      -6

n          1     0     4      -3

Vậy với n thuộc {-3;0;1;4} thì thỏa mãn đầu bài 

a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

mà n là số nguyên

nên n thuộc {0;1;-1}

c: 2n+5/n-3 là số nguyên

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;14;-8}

26 tháng 1 2019

mình cũng hỏi câu giống bạn 

18 tháng 3 2022

để 2n+3/7 là số nguyên thì : 

(2n + 3)  7

 (2n + 3 - 7)  7

 (2n - 4)  7

 [2(n - 2)]  7

Mà (2,7) = 1

 (n - 2)  7

 n - 2 = 7k (k  Z)

n = 7k + 2 (k  Z)

Vậy với n = 7k + 2 (k  Z) thì 2n+3 / 7 là số nguyên.

19 tháng 3 2022

:) no ngan ghe ta

16 tháng 2 2021

2n+1 /n+2 là số nguyên thì 2n+1 phải là bội của n+2

2n+1 chia hết cho n+2

mà 2n+1=2(n+2)-4+1

              =2(n+2)-3

vậy 3 chia hết cho n+2

vậy n thuộc (-3;-1;-5;1)

16 tháng 2 2021

Ta có: \(\frac{2n+1}{n+2}=\frac{2n+4}{n+2}-\frac{3}{n+2}=2-\frac{3}{n+2}\)

Để \(\frac{2n+1}{n+2}\inℤ\)\(\Rightarrow\)\(2-\frac{3}{n+2}\inℤ\)mà \(2\inℤ\)

\(\Rightarrow\)\(3⋮n+2\)\(\Rightarrow\)\(n+2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)\(n\in\left\{-1;-3;-5;2\right\}\)( Các giá trị đều thoả mãn )

Vậy.........

10 tháng 11 2023

n=1 nhé bạn vì2*1+1=3 là số nguyên tố ; 9*1+4=13 là snt

vậy n=1 . cho mk 1 ticknhes 

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $2n+1, 9n+4$ nguyên tố cùng nhau với mọi $n$

$\Rightarrow$ mọi số tự nhiên $n$ đều thỏa mãn yêu cầu.

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻