K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔOAI và ΔOBI có 

OA=OB(gt)

\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))

OI chung

Do đó: ΔOAI=ΔOBI(c-g-c)

b) Xét ΔOHA và ΔOHB có

OA=OB(gt)

\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))

OH chungDo đó: ΔOHA=ΔOHB(c-g-c)

nên AH=BH(hai cạnh tương ứng)

mà A,H,B thẳng hàng(gt)

nên H là trung điểm của AB(đpcm)

5 tháng 2 2021

a) Xét tam giác OAI và tam giác OBI:

^AOI = ^BOI (Oz là tia phân giác của góc xOy)

OA = OB (gt)

OI chung

=> Tam giác OAI = Tam giác OBI (c - g - c)

b) Xét tam giác AOB có: OA = OB (gt)

=> Tam giác AOB cân tại A

Lại có: OH là đường phân giác của góc xOy (H \(\in Oz\))

=> OH là đường trung tuyến (TC các đường trong tam giác cân)

=> H là trung điểm của AB

11 tháng 12 2021

a: Xét ΔOAI và ΔOBI có 

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOAI=ΔOBI

12 tháng 12 2021

vậy thế câu b đâu hả chị

 

 

a: Xet ΔOAI và ΔOBI có

OA=OB

góc AOI=góc BOI

OI chung

=>ΔOAI=ΔOBI

b: ΔOAB cân tại O

mà OH là phân giác

nên OH vuông góc BA và H là trung điểm của BA

Xét ΔIHA vuông tại H và ΔIHB vuông tại H có

IH chung

HA=HB

=>ΔIHA=ΔIHB

c: IH vuông góc AB

=>ΔIHA vuông tại H, ΔIHB vuông tại H

10 tháng 12 2015

Ta dễ dàng CMĐ

tam  giác AOH=BOH

=>AH=BH

=>H là tđ của AB

2 tháng 9 2015

b ) cách 2

Xét tam giác OAH và OBH 

OA = OB ( gt)

góc AOH = góc BOA ( Oz là phân giác )

OH cạnh chung

=> tam giác OAH = tam giác OBH ( c.g.c)

=> góc AHO = góc BHO ( 2 góc tương ứng )

mà góc AHO + BHO = 180 độ

=> AHO = BHO = 180/2 = 90 độ

=> AB vuông góc với Oz tại H

27 tháng 11 2016

chứng minh hộ vs: đầu bài như thế nhưng thêm câu là: C/Minh  : MA=MB

30 tháng 12 2018

A B z O x y I H 1 2 1 2

a)\(\Delta OAI\)và \(\Delta OBI\)có:

      OA = OB (theo GT)

      \(\widehat{O_1}=\widehat{O_2}\)(Vì Oz là tia phân giác của \(\widehat{xOy}\))

      OI: cạnh chung

  Do đó: \(\Delta OAI=\Delta OBI\)(c.g.c)

b) \(\Delta OAH\)và \(\Delta OBH\)có:

            OA = OB (theo GT)

            \(\widehat{O_1}=\widehat{O_2}\)(Vì Oz là tia phân giác của \(\widehat{xOy}\))

           OH: cạnh chung

            Do đó: \(\Delta OAH=\Delta OBH\)(c.g.c)

            Suy ra: AH = BH (cặp cạnh tương ứng)

          Mà điểm H nằm giữa hai điểm A và B

          Nên H là trung điểm của AB