Tìm m,n,p thỏa mãn:
\(m^2+n^2=\frac{m^2}{n^2}+\frac{n^2}{m^2}+\frac{m^2}{p^2}=2\)
\(\frac{p^2}{n^2}+\frac{p^2+n^2}{m}+\frac{n^2}{p^2}=4\)
Nhờ các tiền bối giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)
\(\Leftrightarrow\left(m^2-2+\frac{1}{m^2}\right)+\left(n^2-2+\frac{1}{n^2}\right)+\left(p^2-2+\frac{1}{p^2}\right)=0\)
\(\Leftrightarrow\left(m-\frac{1}{m}\right)^2+\left(n-\frac{1}{n}\right)^2+\left(p-\frac{1}{p}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}m=\frac{1}{m}\\n=\frac{1}{n}\\p=\frac{1}{p}\end{cases}}\Rightarrow m=n=p=1\)
bạn giải dùm mình bài này nhé Tìm x biết: 2+2+22 +23+24+...+22014=2x. Ai giúp mình giải bài này với
Dự đoán dấu "=" khi \(m=n=\frac{1}{\sqrt{2}}\text{ hoặc }=-\frac{1}{\sqrt{2}}\)
Nhận thấy dù m, n âm hay dương trong 2 trường hợp trên thì giá trị P vẫn không đổi.
Ta áp dụng Côsi như sau:
\(\frac{m^2n^2}{m^2+n^2}+k\frac{m^2+n^2}{m^2n^2}+\left(1-k\right)\frac{m^2+m^2}{m^2n^2}\ge2\sqrt{\frac{m^2n^2}{m^2+n^2}.k\frac{m^2+n^2}{m^2.n^2}}+\left(1-k\right)\frac{2mn}{m^2n^2}\)\(\text{(}0
\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)
Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)
\(\Rightarrow VT\ge6=VP\)
Mà GT, VT=VP=6
=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)
=>A=3
=> \(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=> \(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1)=4
Mà m-1 lẻ => \(m-1\varepsilon\) \(Ư\) lẻ của 4 = { -1; 1}
=> m \(\varepsilon\) { 0; 2 }
=> n \(\varepsilon\) { -4; 4 }
Ta có
\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)
Tương tự ta có
\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)
\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)
\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)
\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)
\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)
\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)
\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)
Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)
\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)
\(\frac{m^2}{n^2}+\frac{n^2}{m^2}\ge2\Rightarrow\frac{m^2}{p^2}\le0\Rightarrow m=0\) nhưng khi đó thì \(\frac{n^2}{m^2}\) ko xác định nên đề bài sai
dạ cảm ơn