K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sug đề: Cho (O), BD,CE là các dây của (O)

Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB

1/2(góc EDB+góc ECB)

=1/2(1/2sđ cung EB+1/2sđ cung EB)

=1/2sđ cung EB

=1/2*góc BOE

=>góc EDB+góc ECB=góc BOE

Kẻ Ax là tiếp tuyến tại A với (O).

Có: xABˆ=ACBˆ(=12sđAB⌢)

Xét ΔvABDΔvABD, có:

BACˆBAC^: chung;

⇒ΔvABD∼ΔvACE(gn)⇒ΔvABD∼ΔvACE(gn)

⇒ABAD=AEAC⇒ABAD=AEAC

mà BACˆBAC^ chung

⇒ΔADE∼ΔABC(cgc)⇒ΔADE∼ΔABC(cgc)

⇒AEDˆ=ACBˆ=xABˆ⇒AED^=ACB^=xAB^(ở vị trí SLT)

⇒Ax//DE

mà Ax⊥OA NÊN DE⊥OA

Ta có: AM là đường cao thứ 3( đi qua trực tâm H)

Xét ΔBMHΔBMH và ΔBDCΔBDC có:

BMHˆ=BDCˆ(=900)BMH^=BDC^(=900)

BˆB^ chung

⇒ΔBMH≈ΔBDC(g−g)⇒ΔBMH≈ΔBDC(g−g)

⇒BMBD=BHBC⇒BMBD=BHBC⇔BD.BH=BM.BC(1)⇔BD.BH=BM.BC(1)

Xét ΔCMHΔCMH và ΔCEBΔCEB có:

CMHˆ=CEBˆ(=900)CMH^=CEB^(=900)

CˆC^ chung

⇒ΔCMH=ΔCEB(g−g)⇒ΔCMH=ΔCEB(g−g)

⇒CMCH=CECB⇔CH.CE=BC.CM(2)⇒CMCH=CECB⇔CH.CE=BC.CM(2)

Cộng (1) và (2) vế theo vế, ta được:

BD.BH+CH.CE=BM.BC+BC.CMBD.BH+CH.CE=BM.BC+BC.CM

⇒BD.BH+CH.CE=BC.(BM+CM)=BC2(đpcm)⇒BD.BH+CH.CE=BC.(BM+CM)

=BC2(đpcm)

Kẻ OF//BC(F thuộc AC)

=>OF//DE//BC

DE//BC

=>góc DEA=góc ACB

=>góc DEO=1/2*góc ACB

ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF

=>góc EOF=1/2*góc ACB

=>góc DEO=góc EOF

OF//BC

=>góc FOB=góc OBC=1/2góc ABC

góc BOE=góc BOF+góc EOF

=1/2(góc ABC+góc ACB)

a: 1/2(góc A+góc B+góc C)=90 độ

góc ABK=1/2*góc ABx

=>góc ABK=1/2(góc A+góc C)

góc IBA=1/2*góc B

=>góc ABK+góc IBA=90 độ

=>BI vuông góc BK

b: góc BAK=180-120=60 độ

=>góc BAK=góc CAD=góc DAB=60 dộ

Kẻ tia Ay là tia đối của tia AD

=>góc yAK=góc CAD=60 độ

Xét ΔADB có

AK là tia phân giác góc ngoài của góc yAB

BK là phân giác ngoài của góc ABx

=>DK là phân giác của góc BDA

13 tháng 4 2022

bài này dễ nhưng tạm thời chưa có thời gian để làm . Thông cảm

18 tháng 4 2022

:v

 

22 tháng 7 2019

Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath

Tham khảo bài 3 tại link trên nhé!