Gọi a,b là hai nghiệm của phương trình \(2^x-x^2=0\) thoả mản \(0< a< b\) . Và giả sử nghiệm x của phương trình \(4\log\left(x\right)-\ln x=\log4\) Có dạng \(x=2^{c.\log_{\frac{e^d}{10}}\left(e\right)}\) . Khi này tính \(P=\left(\log_{a+d}\left(b+c\right)^{10!}+\log_{\frac{\left(a+b+c\right)}{d}}\left(d-a\right)-2\log_{b+c-a}\left(d-b+a+c\right)\right)!\)
a) \(P=10!.\log_b\left(\frac{a+c}{d}\right)\)
b) \(P=10!.\log_{10!}\left(\frac{a-b}{c-d}\right)\)
c) \(P=10!.\log_{\frac{a.c}{b}}\left(d-b+a\right)\)
d) \(P=10!.\log_{\frac{a+b+c}{a.c}}\left(d-c+2a-b-1\right)+1\)
\(2^x=x^2\Rightarrow xln2=2lnx\Rightarrow\frac{ln2}{2}=\frac{lnx}{x}\Rightarrow x=2\)
Ta cũng có \(\frac{2ln2}{2.2}=\frac{lnx}{x}\Rightarrow\frac{ln4}{4}=\frac{lnx}{x}\Rightarrow x=4\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
Pt dưới: \(4logx-\frac{logx}{loge}=log4\)
\(\Leftrightarrow logx\left(4-ln10\right)=log4\Leftrightarrow logx\left(ln\left(\frac{e^4}{10}\right)\right)=log4\)
\(\Rightarrow logx=\frac{log4}{ln\left(\frac{e^4}{10}\right)}=log4.log_{\frac{e^4}{10}}e\)
\(\Rightarrow x=10^{log4.log_{\frac{e^4}{10}}e}=\left(10^{log4}\right)^{log_{\frac{e^4}{10}}e}=2^{2.log_{\frac{e^4}{10}}e}\)
\(\Rightarrow\left\{{}\begin{matrix}c=2\\d=4\end{matrix}\right.\)
Bạn tự thay kết quả và tính
Em cảm ơn nhiều ạ. ❤️