Cho tam giác ABC vuông ở A, có B > C. Kẻ đường cao AH, đường trung tuyến AM và đường phân giác AD. Giả sử AH, AM chia BAC thành ba góc bằng nhau
a, Chứng minh AD cũng là tia phân giác của HDM
b, B = CAH
c, Tính B, C và HAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\widehat{BAH}+\widehat{HAD}=\widehat{DAM}+\widehat{MAC}\) (AD là phân giác BAC)
\(\widehat{BAH}=\widehat{MAC}\)
=> \(\widehat{HAD}=\widehat{DAM}\)
=> AD là phân giác góc ham
b) tam giác ABM cân tại A
mà góc BAM=60
=> B=60
A+C+B=180
=> C=180-90-60=30
c) HAD=1/2 góc HAM=> HAD=1/2.30=15
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều