Trong mặt phẳng Oxy.Cho A(1;2), B(-2;6), C(4;4)
a) Tìm tọa độ điểm D sao cho tứ giác ADCB là HBH
b) Tìm tọa độ điểm E sao cho 2\(\overrightarrow{EA}\)_4\(\overrightarrow{EB}\)+\(\overrightarrow{EC}\)=\(\overrightarrow{0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: n P → = 1 ; 1 ; 1 ; A B → = 1 ; 2 ; − 1 Do mặt phẳng Q chứa A,B và vuông góc với mặt phẳng P ⇒ n Q → = n P → ; A B → = − 3 ; 2 ; 1 . Do đó Q : 3 x − 2 y − z − 3 = 0.
Đáp án D
Do mặt phẳng (Q) chứa A,B và vuông góc với mặt phẳng (P)
Do đó (Q): 3x-2y-z-3=0
a/ Để tứ giác ADCB là hbh
\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\left(x_D-x_A;y_D-y_A\right)=\left(x_C-x_B;y_C-y_B\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=4+2\\y_D-2=4-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=7\\y_D=0\end{matrix}\right.\Rightarrow D\left(7;0\right)\)
b/ Có phải đề bài là:
\(2\overrightarrow{EA}-4\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{0}?\)
\(\Rightarrow2\left(x_A-x_E;y_A-y_E\right)-4\left(x_B-x_E;y_B-y_E\right)+\left(x_C-x_E;y_C-y_E\right)=0\)
\(\Leftrightarrow2\left(1-x_E;2-y_E\right)-4\left(-2-x_E;6-y_E\right)+\left(4-x_E;4-y_E\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2-2x_E+8+4x_E+4-x_E=0\\4-2y_E-24+4y_E+4-y_E=0\end{matrix}\right.\)
Bạn tự giải nốt
Kết quả bài này là bao nhiêu vậy ạ?