cho góc nhọn xOy .trên tia Ox lấy hai điểm A,C .trên tia Oy lấy hai điểm B,D sao cho OA=OB,AC=BD
a)Chứng minh AD=BC
b)gọi E là giao điểm AD và BC . Chứng minh tam giac EAC=tam giácEBD
c)chứng minh OE là phân giác của góc xOy,OE vuông góc CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ trên òn đây là bài làm: a) Ta có: OC=OA+AC OD=OB+BD Mà OA=OB và AC=BD (gt) =>OC=OD Xét Δ OAD và Δ OBC có: OA=OB (gt) ˆ O góc chung
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
a:
Ta có: OC=OA+AC
OD=OB+BD
mà OA=OB và AC=BD
nên OC=OD
Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOBC
b: ta có: ΔOAD=ΔOBC
=>\(\widehat{OAD}=\widehat{OBC};\widehat{ODA}=\widehat{OCB}\)
Ta có: \(\widehat{OAD}+\widehat{DAC}=180^0\)(hai góc kề bù)
\(\widehat{OBC}+\widehat{DBC}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OBC}\)
nên \(\widehat{DAC}=\widehat{DBC}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD
c: Ta có: ΔEAC=ΔEBD
=>EC=ED
Xét ΔOEC và ΔOED có
OE chung
EC=ED
OC=OD
Do đó: ΔOEC=ΔOED
=>\(\widehat{COE}=\widehat{DOE}\)
=>\(\widehat{xOE}=\widehat{yOE}\)
=>OE là phân giác của góc xOy
a. Ta có: OD = OB + BD; OC = OA + AC.
Mà OA = OB (gt); BD = AC (gt).
=> OD = OC.
Xét tam giác AOD và tam giác BOC có:
+ OA = OB (gt).
+ \(\widehat{O}\) chung.
+ OD = OC (cmt).
=> Tam giác AOD = Tam giác BOC (c - g - c).
=> AD = BC (Cặp cạnh tương ứng).
b. Tam giác AOD = Tam giác BOC (c - g - c).
=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).
Mà \(\widehat{OAD}+\widehat{DAC}=180^o;\widehat{OBC}+\widehat{CBD}=180^o.\)
=> \(\widehat{DAC}=\widehat{CBD}.\)
hay \(\widehat{EAC}=\widehat{EBD}.\)
c) Tam giác AOD = Tam giác BOC (cmt).
=> \(\widehat{ODA}=\widehat{OCB}\) (2 góc tương ứng).
Xét tam giác EBD và tam giác EAC:
+ \(\widehat{BDE}=\widehat{ACE}\left(\text{}\widehat{ODA}=\widehat{OCB}\right).\) (cmt).
+ BD = AC (gt).
+ \(\widehat{EBD}=\widehat{EAC}\left(cmt\right).\)
=> Tam giác EBD = Tam giác EAC (g - c - g).
=> BE = AE (2 cạnh tương ứng).
Xét tam giác OBE và tam giác OAE:
+ OB = OA (gt).
+ OE chung.
+ BE = AE (cmt).
=> Tam giác OBE = Tam giác OAE (c - c - c).
=> \(\widehat{BOE}=\widehat{AOE}\) (2 góc tương ứng).
=> OE là phân giác của \(\widehat{xOy}\left(đpcm\right).\)
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{AOD}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Xét ΔBDC và ΔACD có
BD=AC
\(\widehat{BDC}=\widehat{ACD}\)
DC chung
Do đó: ΔBDC=ΔACD
Suy ra: \(\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD
c: Xét ΔOEC và ΔOED có
OE chung
EC=ED
OC=OD
Do đó: ΔOEC=ΔOED
Suy ra: \(\widehat{COE}=\widehat{DOE}\)
hay OE là tia phân giác của góc xOy
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD
a/ OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD
Xét tg COB và DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)
=> AD=BC (đpcm)
b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD
Có gócOCB=góc OAD=>1800 - gócOCB=1800 - góc OAD hay gócEBD=góc EAC
Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)
c/vì tgEAC= tg EBDnên ec= ed
xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)
=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)
xét tam giác cod cân tại o(vì oc=od) có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd
Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé
lưu ý:^ là dấu góc nhé
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) : góc chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)
Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ
OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ
Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)
=> DACˆ=CBDˆDAC^=CBD^
Xét ΔEAC và ΔEBD có
ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)
AC=BD(gt)
EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
=> EOCˆ=EODˆEOC^=EOD^
=> OE là tia pg của xOyˆxOy^
Xét ΔCOE và ΔDOE có:
OC=OD(cmt)
COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)
OE: cạnh chung
=> ΔCOE=ΔDOE(c.g.c)
=> OECˆ=OEDˆ=90độ