cho tam giác ABC vuông tại B, AB= 3a, BC= 4a
a. Hãy dựng điểm D sao cho vecto AD= vecto BC
b. Tính độ dài của vecto BA+ BC theo a
giúp em voiiii:(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi M là trung điểm của AD
\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)
\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)
a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)
Lời giải:
$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.
a: \(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=2\cdot CM=5\sqrt{3}\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=5\sqrt{3}\)
b: \(\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\dfrac{\overrightarrow{AC}}{2}\right|=\dfrac{5}{2}a\)